
Bachelor’s Thesis

MCMC Decryption

Tomáš Kocmánek

May 2013

Ing. Tomáš Kroupa, Ph.D.

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Abstract
Cílem této práce je prozkoumat možnosti využití metod Monte Carlo na markovských
řetězcích k útoku na různé klasické šifry, jako substituční či transpoziční šifry. Vytvoříme
program na lámání šifer, který může být použit při zájmovém luštění nebo na šifrovacích
nočních hrách. Probereme možnosti, jak rozpoznat šifru, kterou byla zpráva zašifrována.
Pomocí námi navržených metod dokážeme lámat i velmi krátké zprávy s délkou okolo
150 znaků.

Klíčová slova
Textová šifra, Monte Carlo, Markovský řetězec, dešifrování

v

Abstract
The goal of this thesis is to investigate the use of Markov Chain Monte Carlo (MCMC)
methods to attack different classical ciphers, like substitution or transposition ciphers.
We create a program for breaking specific ciphers, which can be used by hobby cipher
breakers. We discuss the ways of cipher identification. We design and implement
methods, which can break short encrypted messages with length around 150 letters.

Keywords
Text cipher, Monte Carlo, Markov chain, decryption

vi

Contents

1 Introduction 1

2 Cryptography 2
2.1 Background on cryptography . 2
2.2 Cipher mechanisms . 3
2.3 Background on cryptanalysis . 4

2.3.1 Frequency analysis . 4

3 Background on MCMC 5
3.1 Markov chain . 5
3.2 Metropolis algorithm . 5
3.3 Selecting new key . 6

3.3.1 Substitution, keyword and morbit cipher key change 6
3.3.2 Pollux and Vigenère based ciphers key change 7
3.3.3 Transposition ciphers key change 7
3.3.4 Foursquare key change . 8
3.3.5 Playfair key change . 8

4 Identification of a cipher 10
4.1 Ciphertext examination . 10
4.2 The use of unigram distribution . 11

4.2.1 Transposition ciphers recognition 11
4.2.2 Substitution ciphers recognition 12

5 Adjusting the breaking performance 14
5.1 Problems with the Morse code . 14
5.2 Conditional probability versus sum of n-grams 15
5.3 Which n-grams are the best . 16

5.3.1 Convex combination of 𝑛-grams 17
5.4 Scaling parameter . 17
5.5 Number of iterations . 18
5.6 Further improvements . 19
5.7 Breaking foursquare cipher . 20
5.8 Breaking Playfair cipher . 21

6 Results 22
6.1 Time complexity . 23

7 Summary 24

Appendices

A Ciphers 25
A.1 Caesar cipher . 25
A.2 Substitution cipher . 25
A.3 Keyword cipher . 26
A.4 Vigenère cipher . 26
A.5 Beaufort cipher . 27

vii

A.6 Gronsfeld cipher . 27
A.7 Autokey cipher . 28
A.8 Playfair cipher . 28
A.9 Foursquare cipher . 29
A.10 Pollux cipher . 30
A.11 Morbit cipher . 31
A.12 Simple transposition cipher . 31
A.13 Columnar transposition cipher . 31

B Tables 33

Bibliography 35

viii

1 Introduction

Cryptography is the study of algorithms that encrypts and decrypts messages sent
between two parties. Markov chain Monte Carlo (MCMC) algorithms are popular
methods of sampling from complicated probability distributions. Traditionally these
two subjects have been quite distinct. Recently in [1] it was proposed how could these
two fields be connected together. Later work [2] uses MCMC algorithms in order to
break simple substitution and transposition ciphers.

In this work we consider only ciphers that can be encrypted with pen and paper.
These ciphers are no longer in the use by any party to encrypt any secrets, because
they are breakable. Due to this, many hobby breakers solves these ciphers and organize
challenges in solving cipher puzzles.

The goal of this work is:
∙ Significantly extend the use of the MCMC on breaking various ciphers.
∙ Implementing methods and ciphers, and creating a program that could be used

by hobby breakers.
∙ Improving the program to be able to break the shortest messages possible.
∙ Identifying cipher based only on the gibberish of encrypted message.

In the work [2], they estimated the optimal length of ciphertext to be 2000 letters,
at the end of this work, we shows that it can be reduced to much shorter messages.

In the following two chapters we introduce the field of cryptography, the methods for
breaking ciphers and MCMC algorithms, also the ways how it can be used on breaking
ciphers. In the chapter 4 we are discussing ways of distinguishing ciphers. And in the
chapter five, we try to minimize length needed for breaking ciphers. We experiment
with different settings and test different approaches.

1

2 Cryptography

In this chapter we introduce notions of cryptography and cryptanalysis. We show how
a cipher works and how it can be decrypted without knowing the key. Also we mention
modern ciphers such as a DES or RSA.

2.1 Background on cryptography

During the course of history there were always secrets that needed to be hidden and
parties, who were trying to get those secrets. The first cipher was used about 1900 B.C.
(according to [3]); it was a symbolic substitution of hieroglyphs. Old ciphers used simple
mechanisms, which could be easily broken. It was safe to use them, as long as nobody
knows, what mechanism were used. For example, the keyspace of the Caesar’s cipher is
only 25 different keys. Later the mechanism started to be more complex, especially for
the military purposes, in order to make breaking more difficult. Some ciphers we are go-
ing to break in this work were used even in World War II during the tactical operations.

Another approach besides encrypting messages is steganography, it is the art of writ-
ing hidden messages in such a way that no one, besides the sender and the intended
recipient, suspects the existence of the message. For example, the use of invisible ink,
messages written on the back of a stamp or writing the message on the shaved head
of a slave and then wait until the hair grow back, before sending the message. The
advantage of the steganography over the cryptography is that messages do not attract
any attention. The messages encrypted with the classic ciphers only arouse suspicion
and some parties try to break them.

Ciphers can be divided into two groups: classical ciphers and modern ciphers. Clas-
sical ciphers, such as the substitution and the transposition ciphers, perform encryption
at the byte level, in other words changing one letter by another, or mixing their po-
sition. They are also called “pen-and-paper” ciphers, since only a paper and a pen is
needed to apply them.

Since these ciphers are not considered secure, there is many hobby breakers, who try
to solve the ciphers and takes the challenge of breaking them. Usually someone encrypt
a message and publish only its encryption, without saying which algorithm was used.
Participants then try to be the first one, who can break the code. There also exists
many outdoor games based on breaking different kinds of codes. Participants usually
get a code and if they break it they find out a location with a new code. It is like a
race, where you try to be the first in the finish, which position is unknown. There is a
lot of these games, for example the hardest game in the Czech Republic is TMOU 1:
250 teams are on the start and after 20 hours only few of them find the way to the finish.

1http://tmou.cz/

2

2.2 Cipher mechanisms

Figure 1 Example of a cipher from night-long game TMOU

Another group of cipher are the modern ciphers, such as a DES or RSA. They operate
at a bit level and use many different approaches during the encryption. For example,
DES consists of substitution parts, transposition parts and many others; they change
the text beyond recognition. They are much more complicated and secure than the
classical ciphers. And they cannot be broken as easily as classical ones, but the goal of
this work isn’t to break any of them.

2.2 Cipher mechanisms
Ciphers are used for the secret communication between two parties without revealing
the secret to any third party. In cryptography some information (called plaintext) is
transformed into the unintelligible gibberish (called ciphertext) with the information
known only by communicating parties (called key). The process of transformation is
called encryption. Decryption is the converse. The transformation performing encryp-
tion and decryption is referred to as a cipher.

A cipher is a method of concealing a plaintext, where letters are substituted or trans-
posed for other letters, pairs of letters or symbols (e.g. hieroglyphs, numbers, emoticons,
etc.). In general, cipher operates on an alphabet of letters, usually English alphabet
with 26 letters. There are countless number of different algorithms of encrypting the
message. However only some of them are well known and were used by some important
parties to hide their secrets.

In this thesis we work with 13 different ciphers. There were selected well-known
ciphers representing different approaches to the encrypting (e.g. substitution, transpo-
sition, Vigenère, Polybius square, Morse code etc.). The complete list of ciphers is in
the Appendix A, where you can find their brief description.

3

2 Cryptography

2.3 Background on cryptanalysis
Cryptanalysis is the science of analyzing crypto-systems in order to study the hidden
aspects of them. Cryptanalysis is used to breach encrypted systems and gain an access
to hidden information even if the key is unknown. The methods changed in course of
history, but the goal has been always the same.

The first known recorded explanation of cryptanalysis was given by 9th-century Ara-
bian polymath, Al-Kindi in A Manuscript on Deciphering Cryptographic Messages. He
describe method called frequency analysis, which was for a long time the best approach
to breaking ciphers.

2.3.1 Frequency analysis
Frequency analysis is a study of frequencies of letters or combinations of letters in the
ciphertext. In a particular language (e.g. English) some letters occur more likely than
the others. For example, in English “E” is the most used single letter, while “Z” is
the least used. Analogously, we can study pairs of letters, triplets of letters etc. They
are called n-grams, e.g. unigrams, bigrams, trigrams, etc. The easiest way to break
classical ciphers is to compare the unigrams of the ciphertext and the unigrams of some
long text (called reference text). Result of this type of attack on the substitution cipher
is shown in Table 2, where we can see that lot of the letters aren’t correctly decrypted.
This method isn’t very sophisticated and doesn’t correctly decode the whole text. To
get better results we have to use the pair frequencies and more complex algorithms.

Plaintext THE PROJECT GUTENBERG EBOOK OF OLIVER TWIST
Decrypted text THE PSOJEWT FUTEIBESF EBOOK OG OLNVES TCNRT

Figure 2 The result of frequency analysis attack on substitution cipher

4

3 Background on MCMC
Markov chain Monte Carlo (MCMC) methodology provides enormous space for possible
statistical modeling. Monte Carlo methods draw samples from the required distribution
and sample the expectation distribution. MCMC draws the samples from Markov chain,
which is usually easily constructed with desired properties. And sampling it for a long
time until we get expected value. MCMC algorithms are generally used for sampling
from the high-dimensional distributions.

3.1 Markov chain
Markov chain (MC) is a mathematical system that describes the transition from one
state to another, between a finite or a countable number of states. Each state depends
only on the previous one and not on the sequence of states that preceded it. This is
called the Markov property. A Markov chain is usually represented by a transitional
matrix, where each of its entries 𝑚𝑖𝑗 ∈ 𝑆 is a probability that state 𝑖 precedes state 𝑗.
Suppose that the Markov chain is represented with the matrix [𝑚𝑖𝑗]. Then the vector
𝜋 is called a stationary distribution if its entries 𝜋𝑗 are non-negative and it satisfies:

𝜋𝑗 =
∑︁
𝑖∈𝑆

𝜋𝑖𝑚𝑖𝑗

You can find the formal definition and further information about Markov chains in [4].

The important part is that we will be using high-order matrices in this work. The
Markov chain described above basically shows bigram distribution. When we are using
trigrams, the we are considering Markov chain, where each state depends on two pre-
vious, equally tetragrams (each state depends on three previous states) or pentagrams
(each state depends on four previous states).

3.2 Metropolis algorithm
The Metropolis algorithm can draw samples from any distribution 𝑃𝑋 . The main idea
of the algorithm is to generate a series of samples from a MC associated with 𝑃𝑋 , here
any sample depends just on its predecessor. After a sufficient amount of time the dis-
tribution of samples matches 𝑃𝑋 distribution. This is guaranteed by the Fundamental
Theorem for MC [5, Chapter 11.4].

This algorithm uses Markov chain, which can be estimated, when we count condi-
tional probabilities of all pairs of letters in reference text. In this way, we get a stochastic
matrix 𝑀 = [𝑚𝑖𝑗] of transition probabilities, where 𝑚𝑖𝑗 is a conditional probability that
𝑖 precedes 𝑗.

The decryption of cipher is a function that maps the ciphertext to the plaintext:

𝑓 : 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑠𝑝𝑎𝑐𝑒 → 𝑑𝑒𝑐𝑜𝑑𝑒𝑑 𝑠𝑝𝑎𝑐𝑒

5

3 Background on MCMC

At first we define the score function of the decryption 𝑓 :

𝜋(𝑓) =
∏︁

𝑖

𝑀(𝑓(𝑠𝑖), 𝑓(𝑠𝑖+1))

where 𝑠𝑖 runs over consecutive letters in ciphertext. The higher the score is, the more
correctly decrypted the scored text is. The score function can be basically any function,
which returns the higher value the more likely the text appears to be written in English.

The Metropolis algorithm proceeds as follows [6]:

First generate random key and then repeat the next steps sufficiently many times:
1. Choose a new key that depends on the last one, for example, it swaps two letters

in the key.
2. Calculate the acceptance ratio 𝑎𝑡, where 𝑡 represent the number of iteration

𝑎𝑡 = 𝜋(𝑓𝑡+1)
𝜋(𝑓𝑡)

3. Sample 𝑢𝑡 from the uniform distribution over the interval < 0, 1 >.
4. If 𝑎𝑡 ≥ 𝑢𝑡, then accept the proposed key, otherwise reject it.
The algorithm proceeds by randomly attempting to move in the key space to more

correct state, sometimes accepting the moves and sometimes remaining in the state.
The randomness allows accepting the less plausible keys and prevents from getting
stuck in local maximum. Note that the acceptance ratio 𝑎 indicates how probable is
the new proposed key with respect to the current key.

It is also possible to establish scaling parameter 𝑝 and change the equation of 𝑎𝑡 to
the following

𝑎𝑡 =
(︂

𝜋(𝑓𝑡+1)
𝜋(𝑓𝑡)

)︂𝑝

This modification changes a density of 𝜋(.) and can help the algorithm to escape
from the local maxima.

3.3 Selecting new key
We need to define a way of changing a key k. The change of a key should make the
smallest change in the decryption as possible. Therefore the dependency of these two
keys must be maximal. In other words, we are doing the smallest change of the key as
possible.

Ciphers represent the key in different way, therefore we discus picking a new key for
each group of ciphers individually.

3.3.1 Substitution, keyword and morbit cipher key change

The key of the substitution and the keyword cipher is a permuted English alphabet,
where each letter appears in the key exactly once. The key of morbit cipher is the same,
but it consists of permutation of numbers 1-9. The smallest change we can make is to

6

3.3 Selecting new key

swap two letters in the key. First idea for swapping letters was to swap two letters with
uniform probability, so each swap have probability:

1
𝑛2

But with this configuration there is probability

1
𝑛

that the key won’t change, because it swaps one letter with itself. For substitution
cipher it is 1

26 , so every 26th iteration in average is without effect.

To prevent this, we forbid swapping one letter with itself. Then the new probability
of swapping two letters is:

1
𝑛(𝑛 − 1)

The swapping can be understand like moving from one state in Markov chain (the
current key) to the following state (a proposed key).

3.3.2 Pollux and Vigenère based ciphers key change

This category contains following ciphers: Autokey, Beaufort, Gronsfeld, Vigenère and
pollux cipher. These ciphers use a key which can have different length (except of pollux
cipher, which have fixed length) and there aren’t any constrains on the maximum num-
ber of appearances of some letter. This means that even key “KKKKKK” is a valid one.

The smallest change of the key is to change one letter in the key. Replacing a letter
with the same letter is now allowed.

Notice that with this strategy used on the pollux cipher, we can get key that isn’t
correct, because each key must contain each symbol at least once. But the total number
of the incorrect keys is 3 · 29 = 1536, which is insignificant in the comparison with the
whole keyspace. However, in this work we are breaking the pollux cipher with a brute
force of trying all possible keys, because the keyspace is relatively small (55977 keys).
And in comparison with how many iterations would MCMC algorithm had to take, in
order to get correct solution, it is faster to evaluate all keys.

3.3.3 Transposition ciphers key change

Both simple and columnar transposition ciphers uses a string of unique letters as a
key, which determines the order in which are letters in plaintext swapped. The small-
est change of the key is to swap two letters, which is the substitution cipher change.
Even though that this more or less worked, the algorithm usually got stuck in local
maximum. For example if you would have decryption “ROJECTP”, you would have to
make 6 changes to get the correct decryption “PROJECT”, but usually another change
of the key changes the decryption too much and the proposed key is rejected.

As proposed in [2], it is better to use slide moves of the letters in the key. To change
a key by slide moves, one would take a random letter from the key and put it in the ran-
dom position. Thus other letters would slide one position right or left. In this way you

7

3 Background on MCMC

need only one change of the key to get correct decryption of the ciphertext “ROJECTP”.

Second improvement is that sometimes you need to move more than one letter. For
example if you have decryption “WAR PEACE AND”, which is a correct solution in
bigrams point of view, but it isn’t the correct solution. However, if you allow block slide
moves you can get the correct decryption with only one change of the key. Block slide
moves works basically as a letter slide moves, but instead of one letter you are moving
block of letters.

3.3.4 Foursquare key change

The foursquare cipher uses two keys, which are independent on each other. Both
keys are used to create Polybius square, which is 5x5 table of alphabet permutation.
Therefore the smallest change is to select one of the keys and swap two letters in it.

3.3.5 Playfair key change

The Playfair cipher was the toughest one from all ciphers used in this work. It uses
combination of three rules and encrypt message by pair of letters, so it makes the break-
ing much harder. You can change the key in many ways and there is none of them,
which would be sufficient and which could replace the others. I describe three different
types of changing the key. For each of them I have counted, how much one modification
of the key change the plaintext.

The first possible change of the key is swapping two rows or columns in Polybius
square. There is different 10 ways of permutation columns (rows respectively) and I
have counted that the one change of the key alter with 11.7 % of possible pairs of letters
in message.

The second possible change is to swap two letters. There is 600 different pairs which
can be swapped and each swap alter with 20.1 % of the pairs. Therefore one swap of
the key change 1

5 of letters in the decryption.

The last change is the transposition. It was proposed by Jan Stumpel. The main
idea is to transpose the key around some axis, therefore the decryption which uses rule
3 doesn’t change and only pairs of letter that are decrypted with the rules 1 and 2 are
changed. There are 4 different axis around which you can transpose the key: main diag-
onal (NW-SE), side diagonal (SW-NE), horizontal (W-E), vertical (N-S), all swaps are
shown in the Figure 3. The size of text that is altered by these swaps differs. The first
swap alter 66.6 % of the text, the second 33.3 % and the last two only 16.6 % of the text.

ABCDE
FGHIK
LMNOP
QRSTU
VWXYZ

AFLQV
BGMRW
CHNSX
DIOTY
EKPUZ

ZYXWV
UTSRQ
PONML
KIHGF
EDCBA

VWXYZ
QRSTU
LMNOP
FGHIK
ABCDE

VQLFA
WRMGB
XSNHC
YTOID
ZUPKE

Figure 3 The second Polybius square shows the change of the first square around axis NW-SE,
the third around axis SW-NE, the fourth around axis W-E and the last one around axis N-S

8

3.3 Selecting new key

The other problem associated with this cipher was to find out the ratio between these
swaps. It would be irrational to select these swaps uniformly. I have selected the ratio
based on the number of different possible swaps for each rule and on their percentage
of unchanged pairs of letters. The ratio is following: in 5.4 % cases choose rows or
columns swap, in 93.8 % choose the letters swap and in 0.8 % choose the transposition.

In addition the last rule differs on the selection of axis. Therefore I have divided the
ratio between them the in following way: 13 % main diagonal, 25 % side diagonal and
31 % for horizontal and vertical transpositions.

9

4 Identification of a cipher

In this chapter we are going to discuss ways how to distinguish the ciphers. We consider
only the ciphers that are implemented in this work, but this approach can be extended
to any other list of ciphers. However some ciphers are very similar and cannot be dis-
tinguished. In this situation we try to break the ciphertext with all possible ciphers
and then return the decryption with the highest score.

Because some ciphers use the same or similar mechanism of encryption, they can
be broken with other ciphers. In this work there are three with this property: Caesar,
keyword and Gronsfeld cipher. The first two mentioned can be broken as a substitution
cipher, the latter as a Vigenère cipher. Therefore we can exclude them from the analyzed
list of ciphers.

4.1 Ciphertext examination
Only by the examination of the ciphertext you can tell, that some ciphers cannot be
used to decipher the text. First feature is that if the ciphertext contains only numbers
or letters. If it contains only numbers, then the cipher that was used to encrypt the
message is either pollux or morbit cipher. Furthermore, if the ciphertext contains at
least one zero, you can say that it was encrypted with pollux, because morbit doesn’t
encode zeros.

Another feature is that the ciphertext contains other symbols than letters. Some
ciphers can reflect for example punctuation or spaces into the ciphertext and others
cannot. Therefore, if there are any other symbols, you can exclude autokey, foursquare
and Playfair ciphers, because these cannot encrypt anything than the alphabet. Fur-
thermore, if the ciphertext contains only letters and contains at least one letter J, you
can exclude foursquare and Playfair. They don’t use the letter J.

The next significant feature is the length of the ciphertext. Foursquare and Playfair
encrypt message by pairs of letters therefore they must have the ciphertext with the
even length. On the other hand, transposition ciphers need to have length of the ci-
phertext divisible by length of a key. Unfortunately the length of a key isn’t limited,
but it is beyond our capabilities to try every length of the key. Therefore we try only
every possible key with length shorter than 26 letters.

The last feature is a minor one and can exclude only Playfair cipher. This cipher
encrypt message by pairs of letters and cannot encrypt any pair consisted of doubled
letter. If the ciphertext contains double letters in one its pairs, it cannot be encrypted
by Playfair.

10

4.2 The use of unigram distribution

4.2 The use of unigram distribution
Since some ciphers during encryption doesn’t change the unigram distribution in the
ciphertext, you can use this information to distinguish among them. You can divide
ciphers into three categories, which can be later distinguished. The first category are
the ciphers, which doesn’t change the unigram distribution at all. Those are the trans-
position ciphers. They only change the position of letters in the message. The second
category are the monoalphabetic substitution ciphers. These ciphers substitute each
letter with another, although we don’t know which letter correspond to which, the dis-
tribution is still intact. And the third category are the remaining ciphers, which change
the unigram distribution completely and we cannot tell anything about them.

4.2.1 Transposition ciphers recognition
Our first goal is to distinguish the first category, the transposition ciphers, from the
others. We are going to use the fact, that each letter in the ciphertext should have
similar a priori probability as the same letter in the reference text. We find the dif-
ference between the ciphertext and reference text, and establish the threshold, which
distinguish that two groups.

To find out the difference we sort the alphabet based on the a priori probability of
letters in ciphertext (and the same for the reference text). Therefore the first letter
is the one with highest probability (for English it should be letter E). So we have two
arrays of letters 𝑐 and 𝑟. To compute the difference we are using following function:

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑐, 𝑟) =
26∑︁
𝑖

|𝑐(𝑖) − 𝑟(𝑖)|

where functions 𝑐(𝑖) and 𝑟(𝑖) return position of letter 𝑖 in the array 𝑐 (and 𝑟(𝑖) re-
spectively). In other words, if the uniform distributions are similar, the difference will
be low. With this function we can evaluate every ciphertext. Now we must establish
the threshold for detection. To find out its value we have proposed a test. For each
cipher 1000 messages with different content and different length (50-400 letters long)
was encrypted, and we measured theirs difference. We have divided the results into two
groups, the first correspond to the first category and in the second group are ciphers
from second and third category 1. The distribution of difference values fits the normal
distribution. You can see the result in the Figure 4.

1Note that we doesn’t consider pollux and morbit ciphers, because they use numbers instead of letters.

11

4 Identification of a cipher

Figure 4 The results of the test, it shows that these two groups are easily distinguishable.

In the graph above, you can see that these two groups can be distinguished. In order
to minimize an error from incorrect identification, we are going to use two threshold. If
the difference is lower than 119, it is encrypted by the cipher from the first group e.g.
transposition ciphers. And if it is higher than 126, it is encrypted by some cipher from
the second group. Therefore we have zone between these two threshold, which doesn’t
say anything about the used cipher.

4.2.2 Substitution ciphers recognition
Now we can tell, if the ciphertext was encrypted by the transposition cipher or not.
Further, we would like to identify the ciphers from the second category, e.g. the sub-
stitution ciphers. We know about this category of ciphers, that if we sort the array of
a priori probabilities of letters in the ciphertext, lets call it 𝑃𝑐, and the same for array
of a priori probabilities of reference text, lets call it 𝑃𝑟, they will be similar. In other
words, the unigram distributions are alike, regardless the letter substitution. This is
basically the frequency analysis attack on the substitution cipher. Although it isn’t very
successful attack, see the Figure 2 in the Chaper 2, it can be used to distinguish ciphers.

In order to distinguish different ciphertext, we define the following function:

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝑐, 𝑟) =
26∑︁
𝑖

|𝑃𝑐𝑖 − 𝑃𝑟𝑖|

where 𝑃𝑐𝑖 indicates a priori probability of the i-th most probable letter in 𝑃𝑐 (the
array is sorted) and 𝑃𝑟𝑖 analogously. Therefore if the unigram distributions of cipher-
text and reference text are similar, the function 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 returns small values. And if
the ciphertext is encrypted by ciphers, which disturbs unigram distribution, it returns
high values. Furthermore we need to select the threshold for identifying ciphers. To
find out this value we have performed the same experiment as previously. You can see
the result in the following Figure:

12

4.2 The use of unigram distribution

Figure 5 The results of the test. These two groups much more permeates each other

As you can see, the two groups of ciphers permeates each other much more than the
transposition ciphers in previous section, so it cannot be so easily distinguished. To
minimize the error of incorrect recognition, we have selected the two threshold in fol-
lowing way. If the contrast is lower than 0.1, it is encrypted by the substitution ciphers.
And if it is higher than 0.3, it isn’t encrypted by substitution ciphers. Unfortunately
these two thresholds are far apart, therefore it usually doesn’t tell anything about the
used cipher, so we need to try to break all ciphers from both groups.

13

5 Adjusting the breaking performance

In this chapter we are discussing problems that have occurred during development of
the program and how to handle them. And also how to adjust the breaking process to
get the best performance. Our goal is to be able to break the shortest ciphertext pos-
sible. The time consumption isn’t our primary goal, however breaking one ciphertext
is done within few seconds for some ciphers dozens of seconds, which is a sufficient result.

As a reference text we are using books in text files with total size of 20MB. There
are novels, history books, fact books or poems and also texts from different centuries.
As a plain text we are using the book Oliver Twist by Charles Dickens. Note that all
books are available for free in project Gutenberg 1.

5.1 Problems with the Morse code

The Morse code is a method of transforming text information written in 26-letter al-
phabet into a 3-letter alphabet (dot, dash and slash). Each letter is represented by
a unique sequence of dots and dashes, and between each letter is one delimiter and
between each word are two delimiters. It is also possible to encode numbers or others
special symbols, which is not considered in this work.

Morse code has one inconvenient property, which makes breaking ciphers based on
the Morse code (as a morbit or pollux ciphers) more difficult. The point is that you
cannot decode some apparently wrong messages in order to get any gibberish. In other
words, Morse code is really strict and therefore for example among every 5 symbols
must be at least one delimiter or that some codewords don’t have decoding at all (like
----, .-.- or ..--).

This property makes breaking these ciphers with MCMC more difficult. Because we
cannot evaluate each decryption created by slight change of the key, so we cannot tell if
we are making progress and accept proposed key or not. In order to avoid this problem,
we come up with an easy and efficient solution of decoding invalid Morse codes, based
on a greedy algorithm.

Under normal circumstances the decoding algorithm read symbols of the Morse code
until it finds delimiter, then it compares the read symbols with the Morse decoding
table and returns a single letter. If an error occurs, the algorithm ends. Our improve-
ment works the same way until it reaches the error. The error can be either incorrect
codeword or missing delimiter. In both cases the algorithm returns the decoding of the
longest possible word and then continue from the last unused symbol. For example, if
the message is ..--..-. at first it tries to decode codeword ..-- (longer codewords
are not possible), it finds out that this cannot be decoded, so it return the decoding of
codeword ..- which is U. After that it decode -..- as a X and at the end it decodes E.

1http://www.gutenberg.org/

14

5.2 Conditional probability versus sum of n-grams

Therefore the decoding of the ..--..-. is UXE.

More methods were tested. One of them was to return the most likely letter, based
on the frequency analysis, but this method was returning string mostly consisted of
letters E and T, because both have high probability of occurrence and in Morse code
are represented as one symbol codeword. Other approach was to read symbols until it
finds delimiter and then equally divide symbols into the same size groups. For example,
consider the previous Morse code ..--..-., would be at first divided into two groups of
length 4, the first codeword couldn’t be decoded, therefore it would split into 2 groups
of length two. The decryption of the ..--..-. would be IMF. However this method
has proved to be less efficient than the chosen method.

5.2 Conditional probability versus sum of n-grams

As described earlier we count the score function as a product of the conditional proba-
bilities of 𝑛-grams in the text. We determine the conditional probabilities as follows:

𝑃 (𝑋|𝑆) = sum of appearances of string 𝑆𝑋 in reference text
sum of appearances of pairs starting with 𝑆 in reference text

where 𝑋 is one letter and 𝑆 is (𝑛 − 1)-long string, that precedes X.

Chen and Rosenthal [2] proposed not to use conditional probability in the score func-
tion and instead use only the sum of appearances of 𝑛-grams in reference text, in other
words only the numerator from the fraction shown above. They don’t comment it at
all and even doesn’t mention the possibility of the use of conditional probability, which
was proposed by [1]. This made me thinking which score function is better. The dif-
ference is only that in first case, we are normalizing it so the probabilities adds up to one.

In order to find out, which score function is better, we have proposed an experiment.
We have encrypted random parts of text with various lengths and various ciphers. For
this test we have selected 4 ciphers (substitution, transposition, Vigenère and autokey
cipher) and for each one 100 messages of length between 50 and 400 letters were en-
crypted. After that we have tried to break each ciphertext twice, each time with both
score functions separately (one that uses the conditional probability and the second
that uses the sum of 𝑛-grams). Then we have count how many letters was decrypted
incorrectly. The result is shown in the Table below.

Score func. Letters correctly decryp. Letters incorrectly decryp. Correctly
Cond. prob.: 82610 9790 89.4 %

Sum of n-grams: 81940 10460 88.6 %

Table 1 Results of the test

As you can see both function are comparable and neither one is significantly better
than the other.

15

5 Adjusting the breaking performance

5.3 Which n-grams are the best

During breaking the ciphers you can use various 𝑛-grams in the score function. But
which 𝑛-grams are the best for breaking the ciphers? The bigrams are definitely better
than unigrams, but what about trigrams or higher? The longer 𝑛-grams doesn’t al-
ways mean the better solutions. From some point you have too long 𝑛-grams, that they
couldn’t break the cipher, because they won’t give any reasonable score to the gibberish
at the start of the Metropolis algorithm. Therefore the algorithm cannot start to climb
up towards the solution.

To find out which 𝑛-gram is the best for each of the ciphers, we have proposed a test.
We have encrypted 100 different messages with length uniformly distributed between
50-250 letters for each of the ciphers and then try to break them with the use of dif-
ferent 𝑛-grams. I have tried unigrams, bigrams, trigrams, tetragrams and pentagrams,
the longer doesn’t seem to make any improvement.

Unigrams Bigrams Trigrams Tetragrams Pentagrams
0

20

40

60

80

100

C
or

re
ct

ly
(%

)

C. transposition
Morbit

Substitution
Vigenère

Figure 6 Graph comparing the use of the different 𝑛-grams on 4 selected ciphers

In the Figure 6 are shown results of this test on 4 selected ciphers. The graph shows
how many percent of the text has been correctly broken from 100 different encrypted
messages. The complete result of this test is in the Appendix B in the Table 19.

In the graph above, you can see that trigrams and tetragrams have usually better
results than higher 𝑛-grams. As suggested earlier, it is because of that the algorithm
cannot start climbing towards the solution, so any slight change of the key doesn’t
improve the score of the ciphertext.

If you examine Table 19 more closely, you notice, that the foursquare and Playfair
ciphers had very poor results in this test, their best result was around 10% of correct-
ness. Therefore we adjust them individually at the end of this chapter. They need
longer ciphertexts and different approach to be broken.

16

5.4 Scaling parameter

5.3.1 Convex combination of 𝑛-grams

Can we use as a score function some mixture of different score functions, for example
those which uses unigrams, bigrams or trigrams? We use basic method from Natu-
ral Language Processing the convex combination of 𝑛-grams. With this method you
combine unigram, bigram and trigram models in the following way:

𝑞(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2) = 𝜆1 * 𝑃 (𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2) + 𝜆2 * 𝑃 (𝑤𝑖|𝑤𝑖−1) + 𝜆3 * 𝑃 (𝑤𝑖),

where 𝜆1+𝜆2+𝜆3 = 1, 𝜆𝑖 > 0 for all 𝑖 = 1, 2, 3 , and 𝑃 (.|.) is the conditional probability.
To get the score of whole text, we use this function in the same way as Markov chains,
therefore:

𝜋(w) =
𝑡𝑒𝑥𝑡𝐿𝑒𝑛𝑔𝑡ℎ−2∏︁

𝑖

𝑞(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2),

where 𝑤𝑖 is the i-th letter in the ciphertext w. We have defined score function, and we
have to determine the 𝜆𝑖. We have to maximize the following function:

𝐿(𝜆1, 𝜆2, 𝜆3) =
𝑡𝑒𝑥𝑡𝐿𝑒𝑛𝑔𝑡ℎ−2∑︁

𝑖

𝑙𝑜𝑔(𝑞(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2)),

where w is some validation text. The maximization of 𝐿 isn’t difficult task, we use an
iterative method based on the EM algorithm, as described in lectures [7]. Some other
methods of smoothing Language models, can be found in [8].

To find out if this method is better than simple 𝑛-grams, we run the same test as
previous. The results can be seen in last column of Table 19 in the Appendix B. If
we examine the results we can see, that this method is much better for the most of
the ciphers. Therefore we set up our program to use the function that had the best
performance in this test.

5.4 Scaling parameter

The next experiment is with choices of the scaling parameter. This parameter is very
important in the Metropolis algorithm. Larger scaling parameters give lower acceptance
rates, but if it is too low it converge towards the stationary distribution very slowly.
On the other hand smaller scaling parameters give higher acceptance rates, but the
changes are too often that algorithm won’t always find the stationary distribution. To
find the best scaling parameter I have made an experiment. As before I have encrypted
300 messages with the length between 20 and 180 letters, and tried to break them with
different scaling parameters.

17

5 Adjusting the breaking performance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

40

60

80

100

Value of scaling parameter

C
or

re
ct

ly
(%

)

C. transposition
Morbit

Substitution
Vigenère

Figure 7 Results of the test of choosing the scaling parameter

Figure 7 shows results for selected ciphers (complete results for all ciphers can be
found in the appendix B in the Table 20 2). As we can see, there is a best scaling
parameter for each cipher usually between 0.2 and 0.5, therefore we choose these values
as our scaling parameters (for each cipher its own).

5.5 Number of iterations
We could let the Metropolis algorithm run over a few millions iterations, but after some
number of iterations it gets stuck in the maximum (either local or global) and the rest
of the iterations would be useless. So how many iterations is needed to get the best
performance?

We run a test, where for each cipher 300 messages with the lengths between 20
and 180 letters is encrypted and then we try to break them with various number of
iterations. In the Figure below you can see the results of some selected ciphers. The
complete results can be seen in the Appendix B in the Table 21.

2Note that we are not testing Caesar and Pollux ciphers, because we are breaking them with brute
force, i.e. trying every possible key.

18

5.6 Further improvements

1000 2000 3000 5000 7500 10000 15000 20000

20

40

60

80

100

Iterations

C
or

re
ct

ly
(%

)

C. transposition
Morbit

Substitution
Vigenère

Figure 8 The results of the test showing how much of iterations break most of the ciphertext.

Figure 8 shows that by increasing number of iterations, we improve the accuracy of
breaking. But the accuracy is changing very slowly after 5000 or 10 000 iterations.
With this knowledge we adjust the program to run the Metropolis algorithm for 10
000 iterations (in case of some ciphers for 5000 iterations). We could make the num-
ber of iteration for example 50 000 and get better results, but we will instead improve
Metropolis algorithm, to adaptively adjust number of iterations, when it is needed.

5.6 Further improvements
In some cases the algorithm gets into the local non-global maximum and cannot get out
of it, because each change of the key make the score function too low to be accepted.
We solve this problem by making the Metropolis algorithm to run more than once. To
test this we encrypt 300 messages of length 20-120 letters and try to break them with
modified Metropolis algorithm. As shown in the Figure below, if the algorithm runs 3
or 5 times we get much better results. In the Figure 9 are results of this test for some
selected ciphers (complete results can be found in the Appendix B in the Table 22).

19

5 Adjusting the breaking performance

1x 3x 5x 10x 20x

50

60

70

80

90

100

Metropolis repetitions legend cell align

C
or

re
ct

ly
(%

)

C. transposition
Morbit

Substitution
Vigenère

Figure 9 Results of the test of repeatedly running the Metropolis algorithm

Next problem was that sometimes the algorithm was cut off after the fixed number
of iterations, even when he was near the solution, and if he would have a few more
iterations, he could break it. This problem could be solved by either increasing the
number of iteration, which would also increase the time of breaking the cipher or to
adaptively change the number of iterations.

We select the second method. Where the algorithm run for fixed number of iterations
and after that as long as the changes occurs. So, if in the last X iterations the change
of key doesn’t occur, then stop the algorithm. We choose the X to be a quarter of the
fixed number of operations for the specific cipher. Then I have tried how much better
it is in contrast to running Metropolis algorithm once with fixed number of iterations.
The results are in the Table 2 (complete results can be found in the Appendix B in last
column of the Table 22). For some ciphers it is improvement and for others it doesn’t
change the solution.

fixed iterations Extended iterations
Columnar transposition 69.9 74.6

Morbit 87.2 86.9
Substitution 49.5 50.8

Vigenère 90.6 91.1

Table 2 Results of the test showing how many percent of the text can be broken

5.7 Breaking foursquare cipher
As you could notice in previous experiments, foursquare had bad results on the text of
length around 500. This can be caused because of its use of two keys. Thus the keyspace
is squared, compared to ciphers that uses only one key. As well that the cipher encrypt
the message by pairs of letters, which makes the number of substitutions much higher.
Therefore to get better performance you need the longer ciphertext.

20

5.8 Breaking Playfair cipher

To adjust breaker of this cipher we repeat all previous tests with a text of length
5000 letters. It has been experimenting with the length and 5000 letters was sufficient
for getting useful results.

The first test was which 𝑛-grams are the best for the foursquare cipher. After running
100 different ciphers it turned out, that with bigger 𝑛, the better results were made,
until the tetragrams, which correctly broken 79.4 % of texts. After tetragrams any
longer 𝑛-grams made worse results. This outcome is not surprising, because of that the
cipher encrypt message by pairs of letters, then you need to used the 𝑛-grams, which
take two adjacent pairs into consideration.

The second test was to established number of iterations that are needed. This test
resulted that 10 000 iterations are sufficient and with more iterations the results doesn’t
improve much.

The last test was to find out the best scaling parameter. After running this test, it
turned out that with the scaling parameter of 0.1 the algorithm had best performance
with score 86 % of correctly decrypted messages.

The last adjustment was to run Metropolis 15 times, to avoid cases, when the algo-
rithm gets stuck in local maxima. This adjustment had a huge impact on the score and
the length of needed ciphertext rapidly dropped.

5.8 Breaking Playfair cipher
Same as the foursquare, the Playfair cipher wasn’t easy to break. Unfortunately, we
couldn’t solve this issue the same way as in the foursquare cipher, therefore increasing
length of the ciphertext, because breaking the Playfair cipher wasn’t successful with
the original Metropolis algorithm. After some experimenting with this cipher we come
up with modification of Metropolis algorithm, which can break it. The modification
works as follows:

Instead of letting the algorithm to climb towards the solution, sometimes reject the
proposed key, sometimes accept even a worse key, we run the algorithm for many times,
but only for restricted number of iterations. Therefore with every repetition of the al-
gorithm, it resets the starting position and starts in different distance from the solution
and tries to reach the solution. This way the algorithm generates many attempts, where
usually none of them is the correct solution. After that we choose the best attempt
among them and run it through original Metropolis algorithm.

We repeat the same experiments to adjust this improvement. Every times we have
encrypted 100 messages and tried to break them with various settings. It turns out that
this algorithm have the best results, when are used tetragrams in the score function.
This is not a surprise, because the cipher encrypt the message by pairs of letters, the
score function have to take it into account. The number of iterations, which restricts
expansion of attempts, was established at 800. If one use more iterations, the algorithm
would run much longer and the results wouldn’t be much better. And the number of
resets of Metropolis algorithm was established to 125.

21

6 Results

In this chapter we are going to estimate the shortest length of a ciphertext needed to
successfully break presented ciphers. We have designed a test, which determine the
minimal length for each cipher. During the test, 100 messages with the same length
are encrypted and tested. The length of ciphertexts was gradually increased. As the
shortest length of ciphertext correctly encrypted is the one with more than 90 % of
successfully decoded letters. We are assuming that the rest of letters can be guessed
right afterwards.

All tests were carried on personal computer with the following cPC configuration:
Intel Core i5-2410M 2.3 GHz, with 4 GB memory RAM and operation system Microsoft
Windows 7 64x.

Length Auto. Beau. Caes. C.T. Gron. Key. Morb. Pol. Subs. S.T. Vige.
10 5.9 5.6 100 9.7 23 7.9 34.3 89.4 9.3 8.5 8.1
20 9.7 6.1 100 12.1 26 11.7 96.9 96.1 13 10.9 8.5
30 18.3 18.1 100 26.3 40 14 98.3 99 15 17.8 16.4
40 37.7 41.3 100 38 47 22.4 99.1 99.8 21 27 31.5
50 51.2 43.4 100 47.1 69 30.8 100 99.6 33 44.1 48.3
60 56.7 63.2 100 49.8 77 43.4 100 99.8 41 49.2 63.4
70 78.1 69.1 100 57.3 87 54.2 100 100 58 50.7 70
80 80.7 84.4 100 60.8 89 68.5 100 100 68 61.5 82.8
90 78.8 81.9 100 58.2 94 77.9 100 100 79 76 87.6

100 85.1 88.2 100 70.9 97 84.3 100 100 84 88 88.2
110 91.8 95.4 100 82 98 91.8 100 100 89 82.3 97.7
120 88.9 94 100 79.4 99 93.9 100 100 94 88.4 95.7
130 94.4 98 100 85.6 100 95.8 99.1 100 96 94.4 96.8
140 94.3 98.2 100 86 100 96.8 100 100 97 96.5 96.4
150 94.5 100 100 93.2 100 96.3 100 100 97 95 97.1
160 92.5 98 100 93 100 98.3 100 100 97 93.3 99
170 95.3 100 100 96.4 100 99.2 100 100 98 99.1 99

Table 3 Results of the test showing, how many percent of the text can be decrypted with fixed
ciphertext length

The results of breaking ciphers with MCMC are remarkable, for the most ciphers it
is sufficient to have a text with the length shorter than 150 letters. And this is the
average length of ciphers in various cipher challenges, therefore it can be easily used.
If you compare our results of breaking substitution and transposition cipher with [2],
where they estimated optimal length of a ciphertext to be 2000 letters, we can see that
our solution can break more than ten times shorter messages with the same accuracy.

22

6.1 Time complexity

Length 50 150 250 350 450 550 650 750 850
Foursquare 7.6% 10.4 16.8 63.6 96.2 98 99.5 99.8 99.8

Table 4 How many percent of ciphertext can be broken with foursquare cipher and fixed length

The results for the foursquare cipher are in Table 4. As you can see the foursquare
cipher needs to have longer messages than others ciphers (except of Playfair cipher).
This is apparently because this cipher uses much bigger keyspace than others ciphers.
Even though this result is good enough.

Length 200 400 600 800 1000 1200 1400 1600
Playfair 8.25 27.41 81.73 88.82 90.81 92.94 94.35 95.4

Table 5 How many percent of ciphertext can be broken with Playfair cipher and fixed length

The last cipher is the Playfair. It is the most complicated cipher among all the
ciphers considered in this work. We cannot improve breaking performance for this
cipher much more, therefore the shortest text that is much likely to be decrypted is
around 1000 letters long. It is not as good as with others ciphers, but still it could be
used for breaking longer ciphertexts. Another MCMC method, Simulated Annealing,
which was used in [9] can break even shorter messages.

6.1 Time complexity
Breaking ciphers take some time, usually it is a several seconds, but it mainly depends
on the length of a ciphertext. Only foursquare and playfair ciphers takes a longer time.
The foursquare needs around 30 seconds and the Playfair takes few dozens second up
to a few minutes. These results are for this purpose of breaking sufficient. The goal of
this work wasn’t to get the fastest breaker, although it could be optimized.

23

7 Summary

In this thesis, we successfully applied MCMC algorithms to break various ciphers. We
have implemented even some ciphers that aren’t well examined for breaking on the
computer. The attacks are based on the frequency analysis of the ciphertext compared
with a reference text. To get the best results one must know what could be the content
of the encrypted message and select the proper reference text. We have experimented
with such issues as choosing the optimal 𝑛-grams, number of iterations, scaling pa-
rameter, number of repetitions of the whole algorithm, different changes of keys, etc.
Our goal was to minimize the length of text needed to break the ciphers. This work
indicates the potential of MCMC algorithms in cryptanalysis.

We have discussed basics of recognition ciphers based on theirs ciphertexts, by ex-
amination of symbols of their unigram distribution. This area isn’t much explored and
there are many objectives that would be worth of researching. Besides distinguishing
ciphers, one could find out, if there are ciphertext, which can be broken with different
ciphers and keys to get valid messages. Or finding out how much are some ciphers
different and if they can be even distinguishable.

Further work should involve implementing more ciphers and extending the possibil-
ities of the program. Also I would like to move the implementation on smartphone
devices, so that it is usable during outdoor ciphering games.

24

Appendix A

Ciphers

We introduce some of the ciphers, how they work and some basic information about
them. There are many sources about “pen and paper” ciphers, mostly written by the
hobby breakers. The American Cryptogram Association occupy itself with the ciphers,
codes and cryptograms, that can be solved by hand and they publish the regular journal
called The Cryptogram. They also published the largest collection of manual ciphers
and theirs mechanisms1.

We have selected representatives out of many different approaches of encryption and
also we tried to select the most used and the well-known ciphers, in order to make this
work less specialized.

A.1 Caesar cipher

The Caesar cipher is simple cipher, which is often used inside others more difficult ci-
phers. It is named after Julius Caesar, who used it in his private correspondence.

During the encryption each letter in the plaintext is shifted by fixed number of places
in the alphabet.

Because shifting plaintext by zero (or by letter A) doesn’t change anything, therefore
the size of the keyspace is only 25 different keys. Which means that this cipher can be
easily broken with pen and paper, if you try every possible combination.

Key: DDDDDD DDDDDD
pt: caesar cipher
CT: FDHVDU FLSKHU

Table 6 Example of encryption using Caesar cipher

A.2 Substitution cipher

In cryptography the substitution cipher is a method of changing letters or groups of
letters of plaintext by theirs substitution. It can be letters from alphabet, numbers or
even strange symbols. Even that the substitution ciphers are easily broken, they are
used inside bit-oriented block ciphers (e.g., DES, or AES). Block ciphers often include
smaller substitution tables called S-boxes.

1http://cryptogram.org/

25

Appendix A Ciphers

In this work we talk about simple substitution cipher, where each letter is substituted
by another one. To represent the key, we use mixed alphabet of 26 letters. Where the
A is substituted by the first letter of key, the B is substituted by the second letter of
the key and so on.

Because the key have length 26 and there each letter must be exactly once. Therefore
the size of the keyspace is equal to 26!.

Key: RAVBHXGPTMUIQJFELNDSKYOWCZ
pt: mixed alphabet
CT: QTWHB RIEPRAHS

Table 7 Example of encryption using simple substitution

A.3 Keyword cipher

The keyword cipher is a simple substitution cipher, where instead of using key of 26
letters, you can use any word or even phrase. To create key, you remove all symbols
except letters of alphabet and you remove all duplicates of letters that are already
in the key. And finally you add all letters that aren’t in the key at the end of it.
This way you get shifted alphabet, which is then used during encryption by simple
substitution cipher. For example, the keyword “EXTRAORDINARY” creates a key
“EXTRAODINYBCFGHJKLMPQSUVWZ”.

The size of the keyspace depends on the length of the key. We aren’t considering
repeated letters, because they don’t change the key, therefore the size of the keyspace
is equal to 26!

(26−𝑘)! , where k is length of the key.

A.4 Vigenère cipher

The Vigenère cipher is a method of encrypting plain text by using several different
Caesar ciphers based on the letters of a keyword. This is well known cipher and in
course of the history it earned the description le chiffre indéchiffrable (French for “the
indecipherable cipher”).

This Cipher was formulated by Leon Battista Alberti around 1467, but it is named
after Blaise de Vigenère, who published his description of a similar, but stronger au-
tokey cipher. Last time this cipher was used for the militarily purpose was in American
Civil War around years 1860.

Gilbert Vernam tried to improve this cipher, but his Vernam-Vigenère cipher was
still vulnerable to the cryptanalysis. His work, however, eventually led to the creation
of one-time pad, a provably unbreakable cipher.

To encrypt with Vigenère cipher you can use a table of alphabets called a tabula
recta. It is table with 26 rows and 26 columns. On each of the rows is an alphabet,
which is shifted by one according to the previous one. Therefore it correspond to the
26 possible Caesar ciphers. The alphabet used at each point of encryption depends on

26

A.5 Beaufort cipher

a repeating keyword.

The size of the keyspace depends on the length of the keyword k. And it equals to 26𝑘.

Key: VIGENEREVIGENE REVIGENEREVI
pt: polyalphabetic substitution
CT: KWRCNPGLVJKXVG JYWAZMGYKMJV

Table 8 Example of encryption using Vigenère cipher

A.5 Beaufort cipher

The Beaufort cipher was created by Sir Francis Beaufort. It is polyalphabetic cipher
similar to Vigenère cipher, but uses a slightly modified enciphering mechanism and
tableau. Its most famous application was in a rotor-based cipher machine, the Hagelin
M-209. Machine Hagalin M-209 was portable mechanical cipher machine used by US
Navy during the World War II and later in Korean war.

To encrypt you are using a tabula recta. First find the plaintext character on the
top row of the tableau, for example column P. Secondly, travel down through column
P to the corresponding letter in the key, for example K. Finally, move directly left on
that row to the left edge of the tableau, the encryption of letter P with the key letter
K will be there, in this case letter V.

Due to the similarities between this cipher and the Vigenère cipher it is possible to
apply transformation on a tabula recta and then encrypt messages as a Vigenère cipher.

Size of the keyspace is same as in Vigenère cipher, therefore it is equal to 26𝑘, where
k is the length of the keyword.

Key: BEAUFORTCIPHER BEAUFORTCIPH
pt: polyalphabetic substitution
CT: MQPWFDCMCHLOWP JKZCMGYZJABU

Table 9 Example of encryption using Beaufort cipher

A.6 Gronsfeld cipher

The cipher has been named after Johann Franz von Gronsfeld (1640-1719). He was the
imperial field marshal in the Bavarian national uprising of 1705.

The Gronsfeld cipher is exactly the same as the Vigenère cipher, but the numbers
are used instead of letters in the key. There is no other difference. The advantage of
this cipher is that the key can be picked from a sequence, e.g. the Fibonacci series or
from some pseudo-random sequence. You can also use as a key the decimal expansion
of some irrational number, which makes breaking this cipher really difficult.

27

Appendix A Ciphers

If we consider only the keys, that are represented as an integer, then the size of the
keyspace is 10𝑘, where k is the length of the keyword.

A.7 Autokey cipher

The autokey cipher works as Vigenère cipher, but instead of repeating the keyword,
plaintext is used to encrypt itself. To encrypt one would append the plaintext to key-
word, so during the encryption process the first letters of plaintext are encrypted by
keyword and then the rest is encrypted by plaintext itself. This makes frequency anal-
ysis really difficult.

The size of the keyspace is exactly 26𝑘.

Keyword: AUTOKEY
Key AUTO KE Y thisis asecret
pt: this is a secret message
CT: TBBG SW Y LLKJML MWWURKX

Table 10 Example of encryption using autokey cipher

A.8 Playfair cipher

The Playfair cipher was invented in 1854 by Charles Wheatstone, but it is named after
Lord Playfair who promoted the use of the cipher. It was used for tactical purposes by
British forces in the first World War and for the same purpose by the Australians and
Germans during World War II. This was because the Playfair is reasonably fast to use,
requires no special equipment and by the time the enemy cryptanalysts could break the
message, the information would be useless.

The cipher use shuffled Polybius square and 3 simple rules. The Polybius square is 5
by 5 square, which contains all letters of alphabet except of one letter (usually I and J
is considered as one letter). To create this square you need to know the keyword. The
letters of the keyword are written into the square one letter by one into the cells of the
square, skipping letters which are already in the square. After that, the empty cells of
the square are filled with the rest of letters from the ordered alphabet.

P L A Y F
I R B C D
E G H K M
N O Q S T
U V W X Z

Table 11 Example of Polybius square with keyword PLAYFAIR

During the encryption, one would break the message into groups of 2 letter. If there
is any of pairs containing one letter twice, then it is needed to insert any letter between
them (usually letter X) to separate these pairs. If needed append one letter at the end
to make the text length even. Then encrypt each pair using one of the following rules:

28

A.9 Foursquare cipher

1. If both letters appear on the same row of the table, replace each of them by the
letters, which are immediate right to them (wrap around to the left side of the
table if necessary).

2. If both letters appear on the same column of the table, replace each of them by
letters, which are immediate below them (wrap around to the top side of the table
if necessary).

3. If the letters are not on the same row or column, replace the first letter with the
letter which is on the same row as first letter and on same column as second letter.
And the second letter replace with the letter which is on the same row as second
letter and on the same column as the first letter.

The size of the keyspace is equal to 25!. Note that keys are consisted of only 25 letters.

Key: PLAYFAIR
pt: sy mX me tr ic ci ph er
CT: XC KZ EG OD RD DR AE GI

Table 12 Example of encryption using Playfair cipher

A.9 Foursquare cipher

The foursquare cipher was invented by famous French cryptographer Felix Delastelle in
1902 as a variant of Playfair cipher. It uses 4 Polybius square, which are connected to
each other and creating one bigger square. The second and the third Polybius square
is mixed using 2 keywords as in Playfair cipher.

This cipher removes the flaw of Playfair cipher, where the word ABBA for example
would be encoded by XY YX, the characters are reversed in both the plaintext and the
ciphertext.

During the encryption process one split the text into pairs of letters. First letter
of each plaintext pair is found in the first square, the second letter is found in the
fourth square. These two cells are considered opposite corners of a rectangle. Cipher
substitutes are found at the other corners of that rectangle, first in the square 2 and
the second in the square 4.

The size of the keyspace depends on keylengths of both keywords and is equal to
25!

(25−𝑘)! * 25!
(25−𝑙)! , where k, l are lengths of the keywords. Note that keys are consisted of

only 25 letters.

29

Appendix A Ciphers

1 2
A B C D E E X A M P
F G H I K L B C D F
L M N O P G H I K N
Q R S T U O Q R S T
V W X Y Z U V W Y Z
K E Y W O A B C D E
R D A B C F G H I K
F G H I L L M N O P
M N P Q S Q R S T U
T U V X Z V W X Y Z

3 4

Table 13 Four squares created with keywords EXAMPLE and KEYWORD

Key: EXAMPLE and KEYWORD
pt: he ll ow or ld
CT: FY GF HX HQ KK

Table 14 Example of encryption using foursquare cipher

A.10 Pollux cipher
The pollux cipher is based on the Morse alphabet, which itself is composed of dots,
dashes and separators. The Pollux cipher encodes each of these three symbols into
numbers. Where each symbol can be represented by more then one number, therefore
any word in plaintext can be encrypted in many different ways.

The key is represented as a string of 10 symbols (dot, dash, slash). Where the first
symbol of key is encoded to the number zero, second symbol into the number one and
so on. This makes a list of numbers assigned to dots, dashes or slashes.

During the encryption process one should pick symbols from these lists at random.

The size of the keyspace is 310 − 3 · 210 = 55977 (the key must contain each symbol
at least once). Because of this small size of the keyspace, the easiest method to break
this cipher is to use the brute force attack, which takes for this cipher same time as the
use of the MCMC method. During the brute force attack one tries every possible key
and return the decryption with the best score.

Key: –././-/..
Representation of dots: 2,4,8,9
Representation of dashes: 0,1,6
Representation of slashes: 3,5,7
pt: pollux
Morse code: .--./---/.-../.-../..-/-..-/
CT: 8168560154648746893946719467

Table 15 Example of encryption using pollux cipher

30

A.11 Morbit cipher

A.11 Morbit cipher

As a pollux cipher the morbit cipher uses a Morse alphabet. The main difference is
that it takes off the plaintext in units of 2 during the encryption and replaced it by the
numbers 1-9. The key assigns to each of the 9 pairs of symbols (permutation of dots,
dashes or slashes) one number. The key can be represented either as string of numbers
or string of letter, where each letter is mapped onto a number based on its order in the
alphabet.

The size of the keyspace is exactly 9!.

Key: TIMETABLE
Num. key: 857391264

...---///
Encoding: .-/.-/.-/
pt: morbit
Morse code: --/---/.-./-.../../-
CT: 9 6 9 2 3 6 8 7 8 6

Table 16 Example of encryption using morbit cipher

A.12 Simple transposition cipher

The transposition cipher is a method of encryption by which the positions held by units
of plaintext are moved to the new positions, so that the ciphertext is a permutation of
the plaintext.

The simple transposition cipher split the text into blocks with same length as a key
word and use the same permutation of letters in each block according to the keyword.
The letters in the keyword cannot repeat.

The size of the keyspace is equal to 26!
(26−𝑘)! , where k is length of the keyword.

Keyword: DOG
Key: 132 132 132 132 132 132 132
pt: tra nsp osi tio nci phe r..
CT: TAR NPS OIS TOI NIC PEH R..

Table 17 Example of encryption using simple transposition cipher

A.13 Columnar transposition cipher

The columnar transposition cipher extends the simple transposition cipher, in the way
that it changes positions of letters across the whole plaintext rather than across the
block. During the process of encryption, one would write the whole text into the table
with width same as the length of the key, usually the key is transform into the numbers
and is written above the table. Then to create ciphertext one would write first letters
from column under the smallest key letter (or the column marker with key number as

31

Appendix A Ciphers

1), the letters from column marked with number 2 and so on.

The size of the keyspace is equal to 26!
(26−𝑘)! , where k is length of the keyword.

Keyword: RADIO
pt: columnar transposition
Key: 51234

colum
nartr
anspo
sitio

pt: n....
CT: OANI. LRST. UTPI. MROO. CNASN

Table 18 Example of encryption using columnar transposition cipher

32

Appendix B

Tables

Cipher Unig. Big. Trig. Tetrag. Pentag. Linear Inter.
Autokey 71.1 84 94.8 92.7 52.6 98.5
Beaufort 62.5 85.6 93.8 90.8 61.1 97.1
Caesar 100 100 100 100 100 100
Col. transpos. 7.3 59.3 58.4 76 63.7 76.6
Foursquare 10 10.4 8.2 7 6.3 9.1
Gronsfeld 77.8 94.5 96.8 97.7 91.1 98.8
Keyword 23.6 65.8 61.2 52.7 43.4 72.5
Morbit 5.9 48 69.9 83.1 91.5 77
Playfair 7.5 7 6.8 6 5.7 7.2
Pollux 6.4 91.7 99.7 100 100 100
Substitution 23.3 57 60.4 54.8 48.8 74.8
Simple transpos. 10.7 56.5 61.4 81.3 69.2 75.4
Vigenère 59 86.3 92.7 95.7 63.1 98.3

Table 19 Results of the test, which n-grams are best for specific ciphers. Shows how many
percent of the text were correctly decrypted

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 10
Autokey 22.6 66.4 88.2 93.4 94.8 92.8 90.7 84.7 83.6 79.6 79.4 56.1
Beaufort 24 67.8 88 92.6 93.8 94.4 89.4 88.9 85.5 79.9 78.7 65.4

Col.trans. 25.4 39.3 47.5 60.7 63.9 65.5 64.1 60.6 56.3 52.5 56.6 53
Gronsfeld 31.6 64.5 84.3 90.3 92.3 93.6 94.6 92.8 92 91.5 91 75.9
Keyword 19.4 19.5 39.5 55 54.5 53.2 52.1 46.1 48.3 45.6 41.3 34.7

Morbit 12.5 96.9 97.7 95.2 91.8 86.7 82.6 85.7 79.9 76.4 76 54.9
Substitution 18.3 21 42.2 56.1 61.1 55.9 50.8 51.2 46.7 43.7 43.1 31.8

S. trans. 28.7 38.5 50.2 57.5 67.1 59.3 60.2 59.8 63.5 61 59.9 51.1
Vigenère 26.3 65.3 88.5 94.1 94.5 94 89.6 90.7 85 84.6 80.7 64.1

Table 20 This table shows how many percent of the text can be broken with different scaling
parameters

33

Appendix B Tables

500 1000 2500 5000 7500 10000 15000 20000
Autokey 12.1 19.8 34.9 49.5 65 70.9 82.1 86.6
Beaufort 13.7 18.7 36.4 53.8 66.7 72.1 79.8 79.6

Col. Trans. 27.3 34 42.5 48.7 50.8 54.5 57.9 54.6
Gronsfeld 29.6 40.9 61.7 79.5 80.9 84.8 88.1 88.6
Keyword 17.5 24.2 33.4 36.2 44.6 49 54.7 53.1

Morbit 65 87.8 93.6 95.5 97.9 96.9 96.5 97.9
Substitution 17.7 21.2 30.1 41 42.5 47 53.2 56.8

S. trans. 26.7 39.9 45.3 47.8 52.2 55.4 50.8 51.9
Vigenère 13.7 18.8 33.7 59.5 66.9 72 83.2 84.3

Table 21 The results of the test showing how many iterations break the most percentage of
the ciphertext.

1x 3x 5x 10x 20x Extend iterations
Autokey 90.2 93.1 94.5 95.3 95.6 89.6
Beaufort 91.9 94.2 95.6 96.3 96.8 92.4

Columnar transposition 69.9 81.2 81.5 86.3 86.5 74.6
Gronsfeld 95.5 96.6 96.8 96.7 96.4 95.5
Keyword 50.5 57.4 60.8 65.7 67.7 51.5

Morbit 87.2 98 99.6 100 100 86.9
Substitution 49.5 57.2 58.9 65.4 66.9 50.8

Simple transposition 77.9 88.7 89.5 92.1 92.9 78.5
Vigenère 90.6 94.4 94.5 96 97.1 91.1

Table 22 Results of the test of improving the Metropolis algorithm showing how many percent
of the ciphertext can be broken.

34

Bibliography

[1] P. Diaconis. “The Markov Chain Monte Carlo Revolution”. In: Bull. Amer. Math.
Soc. (Nov. 2008).

[2] J. S. Rosenthal J. Chen. “Decrypting Classical Cipher Text Using Markov Chain
Monte Carlo”. In: Department of Statistics, University of Toronto (May 2010).

[3] David Kahn. The Codebreakers, the Story of Secret Writing. 1973.
[4] J. R. Norris. Markov chains. Ed. by University of Cambridge. 1997.
[5] J. L. Snell C. M. Grinstead. Introduction to Probability, 2nd edition. Ed. by Amer. Math.

Soc. 2003.
[6] D. J. Spiegelhalter W. R. Gilks S. Richardson. Markov Chain Monte Carlo in

Practice. Ed. by Chapman & Hall/CRC. 1996.
[7] Michael Collins. COMS W4705: Natural Language Processing. Ed. by Columbia

University. 2013. url: http://www.cs.columbia.edu/~cs4705/.
[8] J. Goodman S. F. Chen. “An Empirical Study of Smoothing Techniques for Lan-

guage Modeling”. In: Harvard University Cambridge, Massachusetts (Aug. 1998).
[9] Michael J. Cowan. “Breaking Short Playfair Ciphers with the Simulated Annealing

Algorithm”. In: Cryptologia, 32:1, 71-83 (2008).

35

http://www.cs.columbia.edu/~cs4705/

	Introduction
	Cryptography
	Background on cryptography
	Cipher mechanisms
	Background on cryptanalysis
	Frequency analysis

	Background on MCMC
	Markov chain
	Metropolis algorithm
	Selecting new key
	Substitution, keyword and morbit cipher key change
	Pollux and Vigenère based ciphers key change
	Transposition ciphers key change
	Foursquare key change
	Playfair key change

	Identification of a cipher
	Ciphertext examination
	The use of unigram distribution
	Transposition ciphers recognition
	Substitution ciphers recognition

	Adjusting the breaking performance
	Problems with the Morse code
	Conditional probability versus sum of n-grams
	Which n-grams are the best
	Convex combination of n-grams

	Scaling parameter
	Number of iterations
	Further improvements
	Breaking foursquare cipher
	Breaking Playfair cipher

	Results
	Time complexity

	Summary
	Ciphers
	Caesar cipher
	Substitution cipher
	Keyword cipher
	Vigenère cipher
	Beaufort cipher
	Gronsfeld cipher
	Autokey cipher
	Playfair cipher
	Foursquare cipher
	Pollux cipher
	Morbit cipher
	Simple transposition cipher
	Columnar transposition cipher

	Tables
	Bibliography

